This post was originally published on the IBM Center for Applied Insights website. The CAI website was officially sunset on 4/15/16. While it remains online, I’m moving some of my posts from the CAI site over here in case they decide to take the site offline at some point in the future.
Last year, I set out to buy a used car. This wasn’t just any car. It would be the vehicle for a long-planned, off-road expedition to Arizona and Utah with my brother, and for many other off-road adventures in the coming years.
I had set my sights on a 1998-2007 Toyota Land Cruiser or the Lexus LX470—both well regarded in off-road circles. However, due to a number of factors, there’s often limited market availability, which makes it difficult to put an accurate price on them. As I began my search, I found significant price variations from standard pricing guides—by as much as $10,000 in some cases.
What’s a data scientist to do? Get some data and build a model of course.